
Magnitude Simba SDK

Build an ADO.NET Provider in 5 Days
Version 10.2.2
October 2022



Copyright

This document was released in October 2022.

Copyright ©2014–2024 insightsoftware. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written
permission from Magnitude, Inc.

The information in this document is subject to change without notice. Magnitude, Inc. strives to keep this
information accurate but does not warrant that this document is error-free.

Any Magnitude product described herein is licensed exclusively subject to the conditions set forth in
your Magnitude license agreement.

Simba, the Simba logo, SimbaEngine, and Simba Technologies are registered trademarks of Simba
Technologies Inc. in Canada, the United States and/or other countries. All other trademarks and/or
servicemarks are the property of their respective owners.

All other company and product names mentioned herein are used for identification purposes only and
may be trademarks or registered trademarks of their respective owners.

Information about the third-party products is contained in a third-party-licenses.txt file that is packaged
with the software.

Contact Us

insightsoftware

www.insightsoftware.com

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
2

http://www.insightsoftware.com/
http://www.insightsoftware.com/


Table of Contents

Table of Contents

Introduction 6
About the Simba SDK 6

About the DotNetUltraLight Sample Solutions 7

About the DotNetUltraLight Provider 7

Day One 8
Install the Simba SDK 8

Configure the NuGet Package Source 8

Build the DotNetUltraLight Example Provider 9

Install the Provider's Assembly into the Global Assembly Cache 9

Install the Other Required Assemblies into the GAC 10

Configure the .NET Framework to Locate the Provider 11

Test the Data Source 13

Set up a New Project to Build Your Own ADO.NET Provider 13

Build Your New Provider 14

Update the Global Assembly Cache 14

Update the machine.config File 15

Test Your New Data Source 15

Day Two 17
View the list of TODOMessages 17

Rename the Simba.ADO.NET Sub-classes 18

Construct the IDriver Instance 19

Set the Properties 19

Create Properties for the Connection String Keys 19

Check the Connection Settings 19

Establish a Connection 20

Day Three 21
Create and Return Metadata Sources 21

Day Four 22
Prepare a Query 22

Execute a Prepared Query 22

Provide Parameter Information 22

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
3

http://www.insightsoftware.com/


Implement Query Execution 23

Retrieve the Query Results 23

Day Five 26
Set the Vendor Name 26

Set the Branding 26

Appendix A: Data Retrieval 27

Contact Us 28

Third-Party Trademarks 29

Table of Contents
Table of Contents

Introduction 6
About the Simba SDK 6

About the DotNetUltraLight Sample Solutions 7

About the DotNetUltraLight Provider 7

Day One 8
Install the Simba SDK 8

Configure the NuGet Package Source 8

Build the DotNetUltraLight Example Provider 9

Install the Provider's Assembly into the Global Assembly Cache 9

Install the Other Required Assemblies into the GAC 10

Configure the .NET Framework to Locate the Provider 11

Test the Data Source 13

Set up a New Project to Build Your Own ADO.NET Provider 13

Build Your New Provider 14

Update the Global Assembly Cache 14

Update the machine.config File 15

Test Your New Data Source 15

Day Two 17
View the list of TODOMessages 17

Rename the Simba.ADO.NET Sub-classes 18

Construct the IDriver Instance 19

Set the Properties 19

Create Properties for the Connection String Keys 19

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
4

http://www.insightsoftware.com/


Check the Connection Settings 19

Establish a Connection 20

Day Three 21
Create and Return Metadata Sources 21

Day Four 22
Prepare a Query 22

Execute a Prepared Query 22

Provide Parameter Information 22

Implement Query Execution 23

Retrieve the Query Results 23

Day Five 26
Set the Vendor Name 26

Set the Branding 26

Appendix A: Data Retrieval 27

Contact Us 28

Third-Party Trademarks 29

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
5

http://www.insightsoftware.com/


Introduction

This guide will show you how to create your own, custom ADO.NET provider, using
C#, with the Simba SDK. It will walk you through the steps to modify and customize the
included DotNetUltraLight sample provider. At the end of five days, you will have a
read-only provider that connects to your data store. 

About the Simba SDK

The Simba SDK contains a complete implementation of the ADO.NET specification,
which provides a standard interface to which any ADO.NET enabled application can
connect. The libraries of theSimba SDK hide the complexity of error checking, session
management, data conversions and other low-level implementation details. They
expose a simple API, called the Data Store Interface API or DSI API, which defines the
operations needed to access a data store. This will be used by common reporting
applications to access your data store when Simba SDK executes an SQL statement.
The diagram below shows how your custom-designed DSI implementation (DSII)
connects directly to your data source.

Figure 1: High-level view of Simba SDK

The components from Simba SDK take responsibility for meeting the data access
standards while your custom DSI implementation takes responsibility for accessing
your data store and translating it to the DSI API. Full documentation for the Simba SDK
is available on the Simba website at http://www.simba.com/odbc-sdk-documents.htm.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
6

Introduction

http://www.simba.com/odbc-sdk-documents.htm
http://www.insightsoftware.com/


About the DotNetUltraLight Sample Solutions

The DotNetUltraLight sample contains two solutions that each use different APIs:

l The DotNetUltraLight_Provider solution uses the Simba.ADO.NET API.
The DotNetUltraLight_Provider_VS2022.sln file implements a provider
that is written entirely in C#, providing an ADO.NET interface. It is a sample DSI
implementation of an ADO.NET provider, which accesses a sample in-memory
data source. The Simba SDK is not used with the ADO.NET provider.

Note:

This is the solution that is described in this document.

l The DotNetUltraLight_Driver solution uses Simba’s C++ to C# bridge (CLIDSI)
API.
The DotNetUltraLight_Driver_VS2022.sln file implements a connector
using a mixture of C# and C++, providing an ODBC interface or SimbaServer
executable for use with any of the SimbaClient connectors.

About the DotNetUltraLight Provider

The DotNetUltraLight sample provider helps you to prototype a DSI implementation for
your own data store so you can learn how the Simba SDK works.  You can also use it
as the foundation for a commercial DSI implementation if you are careful to remove the
shortcuts and simplifications that it contains. This is a fast and effective way to get a
data access solution to your customers.

In the DotNetUltraLight sample provider, there is a pattern of class relationships,
headed by IResultSet and anchored by your MetadataSource classes (For example,
ULTablesMetadataSource) and Table classes (For example, ULPersonTable).

For data retrieval, your Reader class interacts directly with your data store to retrieve
the data and deliver it to the Table class on demand. The Reader class should take
care of caching, buffering, paging, and all the other techniques that speed data
access. Implementing metadata access is a bit more complicated. There are several
Metadata Sources that you can implement, but as a starting point, to make your
provider work properly, you only need to implement the following Metadata Sources:

l Catalog only
l Schema only
l Columns
l Tables
l Type Information

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
7

Introduction

http://www.insightsoftware.com/


Day One

Today's task is to set up the development environment and project files for your
provider. By the end of the day, you will have compiled and tested your ADO.NET
provider.

Install the Simba SDK

Note:

If you have a previous version of the Simba SDK installed, you must uninstall it
before you install the new one.

1. If Visual Studio is running, close it.
2. Run the Simba SDK setup executable that corresponds to your version of Visual

Studio and follow the installer’s instructions.

Important:

The Simba SDK environment variables are defined only for the user that ran
the installation. If you install the SDK as a regular user and then run Visual
Studio as an administrator, the SDK will not work properly.

Configure the NuGet Package Source

1. Locate the nuget.config file in the [INSTALL_DIRECTORY].
2. Modify the file to set the source path to [INSTALL_

DIRECTORY]\Bin\Release.
3. Copy this file to the NuGet configuration directory on your system. Typically, this

is located at: C:\Program Files (x86)\NuGet\Config.
4. Rename the copy in the NuGet configuration directory to something more

descriptive, such as SimbaSDK.config.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
8

Day One

http://www.insightsoftware.com/


Build the DotNetUltraLight Example Provider

Note:

Visual Studio 2022 is used for the examples, but Visual Studio 2015, 2017 and
2019 are also supported. Sample projects for Visual Studio 2015 are not
provided in Simba SDK10.2, but they can still be obtained with Simba SDK
10.1.

1. Launch Microsoft Visual Studio.
2. Click File > Open > Project/Solution.
3. Navigate to [INSTALLDIR]

\SimbaEngineSDK\10.2\Examples\Source\DotNetUltraLight\Sour
ce and then open the DotNetUltraLight_Provider_VS2022.sln file.
The default [INSTALLDIR] is C:\Simba Technologies.

4. Click Build > Configuration Manager and make sure that the active solution
configuration is set to Debug, and then click Close.

5. Click Build > Build Solution or press F7 to build the provider.

Install the Provider's Assembly into the Global Assembly Cache

Each time you build the DLL, it must be installed into the Global Assembly Cache
(GAC) before it can be used. To run the Global Assembly Cache tool, use the Visual
Studio Command Prompt. You must run this command as an administrator.

Note:

Only .NET Framework or .NET Standard targeting providers should be
installed in the GAC. The instructions in this section are applicable only to
these types of providers.

.NET Core providers are only used by applications that explicitly reference and
package the provider or have their own means of loading the provider.

1. On the taskbar, click Start > All Programs > Microsoft Visual Studio > Visual
Studio Tools.

2. Right-click Visual Studio Command Prompt and select Run as administrator.
3. Change to the directory that contains the DLL file that you just built. For example:

cd
[INSTALLDIR]

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
9

Day One

http://www.insightsoftware.com/


\SimbaEngineSDK\10.2\Examples\Source\DotNetUltraLight\Bin\
win\debug

4. Type the following command to install the assembly into the GAC:
gacutil.exe /i Simba.UltraLight.Provider.dll

If the operation was successful you will see a message that the assembly has
been added to the cache.

Note:

If that assembly was already installed in the GAC, you must uninstall it
before you try to install it again. To uninstall the assembly from the GAC
before installing it again, run the following command (as administrator):
gacutil.exe /u Simba.UltraLight.Provider

Install the Other Required Assemblies into the GAC

In addition to the DLL of your provider, Simba.ADO.Net.dll and Simba.DotNetDSI.dll
must be installed in the GAC. These files were installed in the GAC during SDK
installation.

Simba.ADO.NET assembly

In order to check the GAC for the Simba.ADO.NET assembly, run the following
command:
gacutil.exe /l Simba.ADO.NET

If the assembly is already installed in the GAC, then you will see a message saying the
number of items is one, and you can move on to checking the next DLL. However, if
the assembly is not installed in the GAC, then you will see a message saying the
number of items is zero, and you must install the assembly manually. To do this, run
the following command:
gacutil.exe /i "
[INSTALLDIR]
\SimbaEngineSDK\10.2\DataAccessComponents\Bin\Windows_
vs2022\release\Simba.ADO.Net.dll"

Simba.DotNetDSI assembly

In order to check the GAC for the Simba.DotNetDSI assembly, run the following
command:
gacutil.exe /l Simba.DotNetDSI

If the assembly is already installed in the GAC, then you will seea message saying the
number of items is one, and you can move on to checking the other DLL. However, if

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
10

Day One

http://www.insightsoftware.com/


the assembly is not installed in the GAC, then you will see a message saying the
number of items is zero, and you must install the assembly manually. To do this, run
the following command:
gacutil.exe /i "[INSTALLDIR]
\SimbaEngineSDK\10.2\DataAccessComponents\Bin\win\release\Simb
a.DotNetDSI.dll"

Simba.ADO.NET.DDEX assembly

The Data Designer Extensibility (DDEX) assembly is used to hook into Analysis
Services and Visual Studio. It maps from the Microsoft models to the provider models
that are supplied by the SDK.

In order to check the GAC for the Simba.ADO.Net.DDEX assembly, run the following
command:
gacutil.exe /l Simba.ADO.NET.DDEX

If the assembly is already installed in the GAC, then you will see a message saying the
number of items is one. However, if the assembly is not installed in the GAC, then you
will see a message saying the number of items is zero, and you must install the
assembly manually. To install this assembly, type the following command:
gacutil.exe /i "[INSTALL_
DIRECTORY]
\SimbaEngineSDK\10.2\DataAccessComponents\Bin\win\release\
Simba.ADO.Net.DDEX.dll"

Configure the .NET Framework to Locate the Provider

1. Open a text editor as an administrator. For example, to open WordPad as an
administrator, click Start > All Programs > Accessories and then right-click
WordPad and click Run as Administrator.

2. In the text editor, open the machine.config files for the version of the
Microsoft .NET framework that you are using.

For example:
l C:\Windows\Microsoft.NET\Framework\v4.0.30319\Config\m
achine.config

l C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Config
\machine.config

3. Locate the <system.data><DbProviderFactories> node.
4. Insert the following node within the <DbProviderFactories> node:

<add  name="UltraLightDSII Data Provider"
invariant="Simba.UltraLight.Provider" description=".NET

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
11

Day One

http://www.insightsoftware.com/


Framework Data Provider for UltraLightDSII" 
type="Simba.UltraLight.ULDotNetFactory,
Simba.UltraLight.Provider, Version=10.0.0.1000,
Culture=neutral, PublicKeyToken=85df83a0046b8966"/>

Note:

Do not delete the other "name" nodes that may already be present in the
file.

5. At the command prompt, run the following command:gacutil.exe /l
Simba.UltraLight.Provider

You will see a message similar to this:
The Global Assembly Cache contains the following
assemblies:
Simba.UltraLight.Provider, Version=10.0.0.1000,

Culture=neutral, PublicKeyToken=85df83a0046b8966,
processorArchitecture=MSIL

This shows you the invariant name of the provider, which is
Simba.UltraLight.Provider, the Version and the PublicKeyToken.

6. In both machine.config files, for the new node that you just added, adjust the
Version and PublicKeyToken to match the information from the gacutil message
in the previous step.
The XML node will look something like this:
<system.data>
<DbProviderFactories>

...
<add  name="UltraLightDSII Data Provider"
invariant="Simba.UltraLight.Provider" description=".NET
Framework Data Provider for UltraLightDSII" 

type="Simba.UltraLight.ULDotNetFactory,
Simba.UltraLight.Provider, Version=10.0.0.1000,
Culture=neutral, PublicKeyToken=85df83a0046b8966"/>

...
</DbProviderFactories>

</system.data>

7. Save and close both files.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
12

Day One

http://www.insightsoftware.com/


Test the Data Source

To test the provider, you can use the Simba ADO.NET Provider Test Program that is
provided with the DotNetUltraLight example.

1. Open a Windows command prompt.
2. Type the following command to launch the Simba ADO.NET Provider Test

Program:
"[INSTALLDIR]
\SimbaEngineSDK\10.2\Examples\Source\DotNetUltraLight\Bin\
win\debug\TestApp.exe" Simba.UltraLight.Provider UID=na;
PWD=na

The UID and PWD command line options must be specified but, because the
provider does not require a user id and password, you can just type any value for
them.

The test program connects to the Simba.UltraLight.Provider.
3. Enter the following test query: SELECT * FROM person

The schema data and the results of the SQL query are displayed.

If there were no problems with the example provider you built, you are now ready
to set up a development project to build your own ADO.NET provider.

Set up a New Project to Build Your Own ADO.NET Provider

Now that you have built the example provider, you are ready to set up a development
project to build your own ADO.NET provider.

Important:

It is very important that you create your own project directory. You might be
tempted to just modify the sample project files but we strongly recommend
against this. When you install a new release of the SDK, changes you make
will be lost and there may be times, for debugging purposes, that you will need
to see if the same error occurs using the sample provider. If you have modified
the sample provider, this will not be possible.

1. In your Windows Explorer window, copy the
[INSTALLDIR]
\SimbaEngineSDK\10.2\Examples\Source\DotNetUltraLight
directory and paste it to the same location. This will create a new directory called
DotNetUltraLight - Copy. Rename the directory to something that is meaningful

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
13

Day One

http://www.insightsoftware.com/


to you. This will be the top-level directory for your new project and DSI
implementation files. For the rest of this tutorial, when you see
[YourProjectName] in the instructions, replace this with the name you choose for
this directory which is also the name of your project.

2. Open the Source directory of your new copy and then right-click the
DotNetUltraLight_Provider_VS2022.sln file.

3. Select Open with > Microsoft Visual Studio Version Selector.
4. In the Microsoft Visual Studio menu, click View > Solution Explorer.
5. Using the Solution Explorer, rename the DotNetUltraLight_Provider_VS2022

solution to [YourProjectName]_Provider_ VS2022.
6. Rename the C# project UltraLight_Provider_VS2022 to

[YourProjectName]_Provider_VS2022.
7. In the Microsoft Visual Studio menu, click Project and then click

[YourProjectName]_Provider_VS2022 Properties.
8. In the Assembly name text box, replace Simba.UltraLight.Provider with

[YourCompanyName].[YourProjectName].Provider.
9. Click File > Save All.

Build Your New Provider

Click Build > Build Solution or press F7 to build the provider.

Update the Global Assembly Cache

Each time you build the DLL, it must be installed to the Global Assembly Cache (GAC).

1. On the taskbar, click Start > All Programs > Microsoft Visual Studio > Visual
Studio Tools.

2. Right-click Visual Studio Command Prompt and select Run as administrator.
3. Change to the directory that contains the DLL file that you just built. For example,

type a command that is similar the following:

cd [INSTALL_
DIRECTORY]\SimbaEngineSDK\10.0\Examples\Source\
[YourProjectName]\Bin\win\debug

4. Type the following command to install the assembly into the GAC:gacutil.exe
/i [YourAssemblyName].dll

You will see the message, "Assembly successfully added to the cache" if the
operation was successful.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
14

Day One

http://www.insightsoftware.com/


Note:

Each time you make changes to your provider in the upcoming days you
will need to uninstall and re-install your provider from the GAC. To
uninstall your assembly from the GAC before installing it again, run the
following command (as administrator): gacutil.exe /u
<YourAssemblyName>

Update the machine.config File

l Add a new node to the machine.config file.
l You will also want to change the name, invariant name, description, as well as
the assembly name in the type field of the <add> node you are adding to
machine.config.

l Take note of the invariant name you set as this is how you will tell the test app to
use your provider.

l Each time you make changes to your provider in the upcoming days you will
need to uninstall and re-install your provider from the GAC but will not need to
change machine.config unless instructed to.

For detailed instructions, refer to the earlier section, Configure the .NET Framework to
Locate the Provider on page 11.

Test Your New Data Source

To test your new provider, use the Simba ADO.NET Provider Test Program again.

1. Open a Windows command prompt.
2. Type the following command to launch the Simba ADO.NET Provider

Test Program:

[INSTALL
DIRECTORY]\SimbaEngineSDK\10.2\Examples\Source\DotNetUltraLigh
t\Bin\win\debug\TestApp.exe" <YourAssemblyInvariantName>
UID=na; PWD=na

The UID and PWD command line options must be specified but, because the provider
does not require a user id and password, you can just type any value for them.

The test program connects to your provider.

3. Enter the following test query:

SELECT * FROM person

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
15

Day One

http://www.insightsoftware.com/


The schema data and the results of the SQL query are displayed.

If there were no problems, you are now ready to customize your provider.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
16

Day One

http://www.insightsoftware.com/


Day Two

Today's goal is to customize your provider, enable logging and establish a connection
to your data store. In the DotNetUltraLight provider, the areas of the code that you
need to change are marked with TODO(ADO) messages along with a short
explanatory message.

Note:

These TODO(ADO) messages are distinct from TODO(ODBC) messages that
are for a different solution. For the purposes of this guide, you can disregard
the TODO(ODBC) messages.

Most of the areas of the code that you need to modify are for productization. These are
things like naming the provider, setting the properties that configure the provider, and
naming the log files. The other areas of the code that you will modify are related to
getting the data and metadata from your data store into the Simba SDK. Because the
DotNetUltraLight provider already has the classes and code to do this against the
example data store, all you have to do is modify the existing code to make your
provider work against your own data store.

View the list of TODO Messages

1. Go to Microsoft Visual Studio.
2. Click Edit > Find and Replace > Find in Files.
3. In the Find and Replace window, in the Find what text box, type TODO(ADO).
4. Click Find All.

The results are displayed in the Find Results output window. The list of TODO
messages is as follows:

TODO(ADO)  #1: Rename the Simba.ADO.Net sub-
classes. (ULDotNetFactory.cs)

TODO(ADO)  #2: Construct the IDriver instance. (ULDotNetConnection.cs)
TODO(ADO)  #3: Set the connector properties. (ULDriver.cs)

TODO(ADO)  #4: Create properties for the connection
string keys.

(ULDotNetConnection

StringBuilder.cs)
TODO(ADO)  #5: Check connection settings. (ULConnection.cs)
TODO(ADO)  #6: Establish a connection. (ULConnection.cs)
TODO(ADO)  #7: Create and return your Metadata (ULDataEngine.cs)

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
17

Day Two

http://www.insightsoftware.com/


Sources.
TODO(ADO)  #8: Prepare a query. (ULDataEngine.cs)
TODO(ADO)  #9: Implement a QueryExecutor. (ULQueryExecutor.cs)
TODO(ADO)  #10: Provide parameter information. (ULQueryExecutor.cs)
TODO(ADO)  #11: Implement Query Execution. (ULQueryExecutor.cs)
TODO(ADO)  #12: Implement your DSISimpleResultSet. (ULPersonTable.cs)
TODO(ADO)  #13: Set the vendor name, which will be
prepended to error messages. (ULDriver.cs)

TODO(ADO)  #14: Set the branding of the registry key to
read configuration from. (ULDotNetConnection.cs)

Over the next four days, you will be visiting each TODO and modifying the source
code.

Today's goal is to customize your provider including application and user-facing
components that identify your provider, enable logging, and establish a connection to
your data store. To accomplish this you will visit TODO items 1 to 6.

Rename the Simba.ADO.NET Sub-classes

TODO(ADO)  #1: Rename the Simba.ADO.NETsub-classes. (ULDotNetFactory.cs)

1. In Microsoft Visual Studio, open the file that contains the TODO #1 message.
2. Each of the classes in the DotNet folder of the solution explorer should be

renamed for your provider. These classes are:
l ULDotNetFactory
l ULDotNetCommand
l ULDotNetCommandBuilder
l ULDotNetConnection
l ULDotNetConnectionStringBuilder
l ULDotNetDataAdapter
l ULDotNetParameter

3. To rename them, use Visual Studio’s rename refactoring utility as follows. Select
the class name then from the right-click menu, select Refactor -> Rename (Ctrl
+ R, Ctrl + R). For each class, choose a name replacing the prefix ULDotNet
with your own prefix. You should also rename their filenames to correspond to
the class name.

4. Click Save.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
18

Day Two

http://www.insightsoftware.com/


Construct the IDriver Instance

TODO(ADO)  #2: Construct the IDriver instance. (ULDotNetConnection.cs)

The CreateDSIDriverInstancemethod is the main entry point for
Simba.ADO.NET to initialize your provider. This method is called once as soon as an
application first tries to connect to your provider. There is nothing to change here right
now, although you may want to add processing at this point for a commercial provider.

Set the Properties

TODO(ADO)  #3: Set the connector properties. (ULDriver.cs)

1. Double click the TODOmessage to jump to the relevant section of code.
2. Change the DSI_DRIVER_DRIVER_NAME setting. Set this to the name of your

provider.

Note:

You may want to revisit this section when fully productizing your provider.

Create Properties for the Connection String Keys

TODO(ADO)  #4: Create properties for the connection string
keys.

(ULDotNetConnection

StringBuilder.cs)

The connection string builder class is used by some applications to prompt the user for
connection options before attempting to connect. Here you will rename or replace the
existing properties UserName, Password, and Language with your own properties that
may be used for connections. Take note of how each of the existing properties are
implemented by storing and retrieving the value from the base class map accessor:
this[KeyString].

Check the Connection Settings

TODO(ADO)  #5: Check connection settings. (ULConnection.cs)

Given a connection string from the ADO.NET application, the Simba.ADO.NET layer
will parse the connection string into key-value pairs before calling ULConnection’s
UpdateConnectionSettings()method to validate its contents. This method
should validate that the entries within the requestSettings are sufficient to create a

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
19

Day Two

http://www.insightsoftware.com/


connection. If not, you can ask for additional information from the application by
specifying the additional settings in the return value.

Should any of the values received be invalid, you should throw an exception. Note
however that you should only be checking that the values be in the correct form or
within certain allowable ranges. Do not attempt to communicate with the data store yet
to validate keys such as username and password. For your convenience, you can also
use the utility functions supplied: VerifyRequiredSetting() and
VerifyOptionalSetting(). If there are no further entries required, simply leave
the returned dictionary empty.

Establish a Connection

TODO(ADO)  #6: Establish a connection. (ULConnection.cs)

Once ULConnection’s UpdateConnectionSettings() returns a dictionary without any
required settings (if there are only optional settings, a connection can still occur), the
Simba.ADO.NET layer will call ULConnection’s Connect() passing in all the
connection settings received from the application. This is where you should
authenticate the user against your data store using the information provided within the
connectionSettings parameter.

Should authentication fail, the application should throw an exception. You can also use
the utility functions supplied: GetRequiredSetting() and GetOptionalSetting
().

You have now authenticated the user against your data store.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
20

Day Two

http://www.insightsoftware.com/


Day Three

Today’s goal is to return the data used to return schema information to the ADO.NET
application. The majority of all ADO.NET applications require the following schema
names:

l DataTypes

l Tables

l Columns

Create and Return Metadata Sources

TODO(ADO)  #7: Create and return your Metadata Sources. (ULDataEngine.cs)

ULDataEngine’s MakeNewMetadataSource() is responsible for creating the sources
to be used to return data to the ADO.NET application for the various schemas.
Schemas are mapped to a unique MetadataSourceId, which is then mapped to an
underlying IMetadataSource that you will implement and return. Each
IMetadataSource instance is responsible for the following:

l Creating a data structure that holds the data relevant for your data store:
Constructor

l Navigating the structure on a row-by-row basis: MoveToNextRow()
l Retrieving data: GetMetadata() (See the section, Set the Branding on page 26,
for a brief overview of data retrieval).

Handle MetadataSourceID.TypeInfo

The DataTypes schema is handled as follows:

1. When called with TypeInfo, ULDataEngine’s MakeNewMetadataSource() will
return an instance of ULTypeInfoMetadataSource.

2. The example provider exposes support for all data types although its one table
only contains the following types:

l SQL_WVARCHAR
l SQL_INTEGER
l SQL_NUMERIC

3. For your provider, you may need to change the types returned and the
parameters for the types in ULTypeInfoMetadataSource’s InitializeDataTypes().

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
21

Day Three

http://www.insightsoftware.com/


Day Four

Today’s goal is to enable data retrieval from within the provider. We will cover the
process of opening a table defined within your data store, retrieving the column
information for the table, and finally retrieving data.

We will cover the process of preparing a query, executing the prepared query,
retrieving the query result, retrieving the column information for the query result, and
finally retrieving data.

Prepare a Query

TODO(ADO)  #8: Prepare a query. (ULDataEngine.cs)

ULDataEngine’s Prepare() is the entry point where the Simba SDK requests queries to
be prepared. You must modify this method to perform the following:

l Send a request to your data store to prepare the query.
l Handle the response from your data store.
l Create an instance of your IQueryExecutor implementation containing whatever
information is necessary to execute the query.

If the query can be prepared, a new instance of your IQueryExecutor will be returned.

Execute a Prepared Query

After a query has been prepared, a query is executed.

TODO(ADO)  #9: Implement a QueryExecutor. (ULQueryExecutor.cs)

You will need to modify the constructor of ULQueryExecutor to receive information
from query preparation to be used for query execution. In the constructor, you must
also update the Results property to be a list of IResult of the correct IResultSet or
IRowCountResult types. These results should not contain actual data yet but may be
used to retrieve column metadata before the query is executed.

Provide Parameter Information

TODO(ADO)  #10: Provide parameter information. (ULQueryExecutor.cs)

If your data store is capable of handling query parameters, you will need to fill the
ParameterMetadata list with relevant parameter metadata for the query. If the query
contains no parameters, an empty list should be created.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
22

Day Four

http://www.insightsoftware.com/


Implement Query Execution

TODO(ADO)  #11: Implement Query Execution. (ULQueryExecutor.cs)

ULQueryExecutor’s Execute() is the entry point where the Simba SDK requests
queries to be executed. You must modify this method to perform the following:

l Serialize all input parameters (if any) in a form that can be consumed by the data
store.

l Send a request to your data store to execute the query.
l Retrieve all output parameters (if any) from the data store.
l Prepare to retrieve query results from the data store.

Retrieve the Query Results

After a query has been executed, the query results are returned in an implementation
of the IResultSet interface. The DSISimpleResultSet class provides a partial
implementation of the interface to simplify the task of implementing a basic forward-
only, read-only result set.

TODO(ADO)  #12: Implement your DSISimpleResultSet. (ULPersonTable.cs)

ULPersonTable implements a simple in-memory table. In general, your “table” class
can represent the results of a query that may involve more than a single table but for
simplicity, this tutorial assumes a query involving a single table.

The next sections describe the changes you must make to ULPersonTable for it to
work with your data store.

Return the columns defined for your table

l InitializeColumns()

This method must be modified so that, for each column defined in the query, you
define the ColumnMetadata in terms of SQL types.

Here is an example of pseudo code for the new method:

Get all the column information from your data store for the table

For Each Defined Column

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
23

Day Four

http://www.insightsoftware.com/


{
// Set the argument of the following method call to the

SQL Type that
// maps to the data store type of the column.
TypeMetadata typeMetadata =

TypeMetadata.CreateTypeMetadata(SqlType.VarChar);

// Depending on SQL type, set different properties:
if (character type)
{

typeMetadata.IntervalPrecision = m_settings.m_
maxColumnSize;
}
else if (exact numeric type)
{

typeMetadata.Scale = scale;
}

// Create the column metadata.
DSIColumn columnMetadata = new DSIColumn(typeMetadata);
columnMetadata.Catalog = m_catalogName;
columnMetadata.Schema = m_schemaName;
columnMetadata.TableName = m_tableName;
columnMetadata.Name = “column name”;
columnMetadata.Label = “localized column name”;
columnMetadata.IsNullable = Nullability.Nullable;

if ( character type )
{

columnMetadata.Size = m_settings.m_maxColumnSize;
}

// Add the column metadata to the list of column
metadata.
m_columns.add(columnMetadata);

}

Data Retrieval

l MoveToNextRow()
l GetData()

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
24

Day Four

http://www.insightsoftware.com/


These methods are responsible for navigating a data structure containing
information about one table in your data store, and retrieving data from that
table.

It is best to implement a class that provides a streaming interface for the data in
the table within your data store. It should also provide the ability to navigate
forward from one table row to the next. The class should be able to navigate
across columns within the row and to read the data associated with the current
row and column combination.

In the DotNetUltraLight Provider, ULPersonTable stores its data in an in-memory
list of a class specific to describing rows of this table. Each member variable in
the RowData object represents a column of data. The GetData method takes a
column index and uses it to determine from which member variable of the current
row/object to retrieve data. See Set the Branding on page 26, for a brief overview
of data retrieval.

l DoCloseCursor()

This is a callback method called by the Simba SDK to indicate that data retrieval
has completed and that you may now perform any tasks related to closing any
associated result set in your data store.

You can now execute queries and retrieve data from your data store. You should
be able to use the sample ADO.NET application to execute queries and to see
the results returned from your data store.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
25

Day Four

http://www.insightsoftware.com/


Day Five

Today’s goal is to start productizing your provider.

Set the Vendor Name

TODO(ADO)  #13: Set the vendor name, which will be prepended to
error messages. (ULDriver.cs)

Most error messages generated within the Simba.ADO.NET and Simba.DotNetDSI
components will have a vendor name or brand prepended to help identify the source of
the error. Here you should uncomment the VendorName property and change the
string it returns to be one to identify your brand or provider.

Set the Branding

TODO(ADO)  #14: Set the branding of the registry key to
read configuration from. (ULDotNetConnection.cs)

Change the string here to return the key name indicating where to read configuration
values from in the registry. The default value of @“Simba\DotNetUltraLight” causes
the config values to be read from Software\Simba\DotNetUltraLight\Driver.
(Note that 32-bit applications on 64-bit platforms will read from
Software\Wow6432Node\Simba\DotNetUltraLight\Driver.)

Finally, rename any remaining namespaces, files, and classes that contain the name
UltraLight or abbreviation UL.

You are now done with all of the TODO’s in the project. You have created your own,
custom ADO.NET provider using the Simba SDK by modifying and customizing the
DotNetUltraLight sample provider.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
26

Day Five

http://www.insightsoftware.com/


Appendix A: Data Retrieval

In the Data Store Interface (DSI), the following two methods actually perform the task
of retrieving data from your data store:

1. Each IMetadataSource implementation of GetMetadata()
2. ULPersonTable’s GetData()

Both methods will provide a way to uniquely identify a column within the current row.
For IMetadataSource, the Simba SDK will pass in a unique column tag (see
MetadataSourceColumnTag). For ULPersonTable, Simba SDK will pass in the
column index starting at 0.

In addition, both methods accept the following three parameters:

1. out_data
TheObject into which you must set your cell’s value. The data you set must be
represented as the Object or primitive data type that corresponds to the data
type you set in the column metadata. For example, if a column is a
SqlType.Integer, you must use a System.Int32. For a full list of the types
used, see the documentation for Simba.DotNetDSI.DataEngine.SqlType.
If your data is not stored as the appropriate type, you will need to write code to
convert from your native format.

2. offset
Some data types can be retrieved in parts. This value specifies where in the
current column the value should be copied from. The value is usually 0.

3. maxSize
The maximum size (in bytes) that can be copied into the type. For character or
binary data, copying data over this amount can result in a data truncation
warning, or worse, a heap-violation.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
27

Appendix A: Data Retrieval

http://www.insightsoftware.com/


Contact Us

For more information or help using this product, please contact our Technical Support
staff. We welcome your questions, comments, and feature requests.

Simba Technologies Inc.

938 West 8th Avenue

Vancouver, BC Canada

V5Z 1E5

www.simba.com

Telephone +1 (604) 633-0008 sales: extension 2, support: extension 3

Fax +1 (604) 633-0004

Information and product sales: solutions@simba.com

Technical support: support@simba.com

Follow us on Twitter:

@simbatech

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
28

Contact Us

http://www.insightsoftware.com/


Third-Party Trademarks

Simba, the Simba logo, Simba SDK, and Simba Technologies are registered
trademarks of Simba Technologies Inc. in Canada, United States and/or other
countries. All other trademarks and/or servicemarks are the property of their
respective owners.

Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).

Linux is the registered trademark of Linus Torvalds in Canada, United States and/or
other countries.

Mac and macOS are trademarks or registered trademarks of Apple, Inc. or its
subsidiaries in Canada, United States and/or other countries.

Microsoft SQL Server, SQL Server, Microsoft, MSDN, Windows, Windows Azure,
Windows Server, Windows Vista, and the Windows start button are trademarks or
registered trademarks of Microsoft Corporation or its subsidiaries in Canada, United
States and/or other countries.

Red Hat, Red Hat Enterprise Linux, and CentOS are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in Canada, United States and/or other
countries.

Solaris is a registered trademark of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

SUSE is a trademark or registered trademark of SUSE LLC or its subsidiaries in
Canada, United States and/or other countries.

Ubuntu is a trademark or registered trademark of Canonical Ltd. or its subsidiaries in
Canada, United States and/or other countries.

All other trademarks are trademarks of their respective owners.

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
29

Third-Party Trademarks

http://www.insightsoftware.com/


the Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR
ANY DAMAGESWHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTIONWITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their
respective owners.

OpenSSL

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

All advertising materials mentioning features or use of this software must display the
following acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org/)"

The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For
written permission, please contact openssl-core@openssl.org.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
30

Third-Party Trademarks

http://www.openssl.org/
http://www.insightsoftware.com/


Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.

Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
EXPRESSED OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following
conditions are aheared to. The following conditions apply to all code found in this
distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The
SSL documentation included with this distribution is covered by the same copyright
terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not
to be removed. If this package is used in a product, Eric Young should be given
attribution as the author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual) provided
with the package.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
31

Third-Party Trademarks

http://www.openssl.org/
http://www.insightsoftware.com/


Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display
the following acknowledgement:

4. "This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com)"

5. The word 'cryptographic' can be left out if the rouines from the library being used
are not cryptographic related :-).

6. If you include any Windows specific code (or a derivative thereof) from the apps
directory (application code) you must include an acknowledgement:

7. "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS
OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of
this code cannot be changed. i.e. this code cannot simply be copied and put under
another distribution licence [including the GNU Public Licence.]

Expat

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
32

Third-Party Trademarks

http://www.insightsoftware.com/


persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NOINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Stringencoders License

Copyright 2005, 2006, 2007

Nick Galbreath -- nickg [at] modp [dot] com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of the modp.com nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIEDWARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
33

Third-Party Trademarks

http://www.insightsoftware.com/


LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This is the standard "new" BSD license:

http://www.opensource.org/licenses/bsd-license.php

dtoa

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without
fee is hereby granted, provided that this entire notice is included in all copies of any
software which is or includes a copy or modification of this software and in all copies of
the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIEDWARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT
MAKES ANY REPRESENTATION ORWARRANTY OF ANY KIND CONCERNING
THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE.

www.insightsoftware.com

©2024 insightsoftware. All rights reserved.
34

Third-Party Trademarks

http://www.opensource.org/licenses/bsd-license.php
http://www.insightsoftware.com/

	Table of Contents
	Introduction
	About the Simba SDK
	About the DotNetUltraLight Sample Solutions
	About the DotNetUltraLight Provider

	Day One
	Install the Simba SDK
	Configure the NuGet Package Source
	Build the DotNetUltraLight Example Provider
	Install the Provider's Assembly into the Global Assembly Cache
	Install the Other Required Assemblies into the GAC
	Configure the .NET Framework to Locate the Provider
	Test the Data Source
	Set up a New Project to Build Your Own ADO.NET Provider
	Build Your New Provider
	Update the Global Assembly Cache
	Update the machine.config File
	Test Your New Data Source

	Day Two
	View the list of TODO Messages
	Rename the Simba.ADO.NET Sub-classes
	Construct the IDriver Instance
	Set the Properties
	Create Properties for the Connection String Keys
	Check the Connection Settings
	Establish a Connection

	Day Three
	Create and Return Metadata Sources

	Day Four
	Prepare a Query
	Execute a Prepared Query
	Provide Parameter Information
	Implement Query Execution
	Retrieve the Query Results

	Day Five
	Set the Vendor Name
	Set the Branding

	Appendix A: Data Retrieval
	Contact Us
	Third-Party Trademarks

